-
MenuBack
-
GLOSSAIRE
-
-
Contents
-
-
A
-
-
-
-
B
-
-
-
C
-
-
-
D
-
-
Hydraulic distributor
- Lever-operated dispenser
- Drawer - notched
- Electrical distributor
- NG6 spool valve with levers
- Splitter distributor
- Electro NG6 + manual lever
- Manual selectors
- Electrical circuit selector
-
Hydraulic distributor
-
-
-
E
-
-
-
F
-
-
-
H
-
-
-
J
-
-
-
L
-
-
-
M
-
-
Hydraulic motors
- Hydraulic orbital motors
- Profiled socket - fluted
- Orbital engine seals
- Steering motors
- Motor mounting bracket
- Motor flow regulators
- Engine pressure regulators
-
Hydraulic motors
-
-
-
-
P
-
-
-
-
R
-
-
-
S
-
-
-
-
T
-
-
-
V
-
-
Double-acting hydraulic cylinders
- Double-acting cylinder - 16 x 25
- Double-acting cylinder - 20 x 32
- Double-acting cylinder - 25 x 40
- Double-acting cylinder - 30 x 50
- Double-acting cylinder - 30 x 60
- Double-acting cylinder - 35 x 60
- Double-acting cylinder - 40 x 70
- Double-acting cylinder - 40 x 80
- Double-acting cylinder - 50 x 100
- Double-acting cylinder - 70 x 120
-
Double-acting hydraulic cylinders
-
-
-
-
Cylinder
-
-
Double-acting cylinders
-
-
Double-acting cylinder seals
-
-
Single-acting cylinders
-
-
Single-acting cylinder seals
-
-
Splitter cylinders
-
-
Cylinder limit switch
-
-
BSP hydraulic fittings
-
-
BSP hydraulic hoses
-
-
Engine
-
-
Orbital hydraulic motors
-
-
Motor flow regulator
-
-
Engine pressure regulator
-
-
Motor mountings
-
-
Orbital motor seals
-
-
Profiled sockets
-
-
Orbitrol steering motors
-
-
Steering axle columns
-
-
Seals Orbitrol motors
-
-
Flexible
-
-
Male/Male BSP fittings
-
-
Male/Female BSP connections
-
-
BSP Female/Female connections
-
-
Copper seals - BS bushings
-
-
BSP connection adapters
-
-
Hydraulic valves - HP valves
-
-
Connection
-
-
Straight BSP fittings
-
-
BSP cross adapter
-
-
BSP plugs/nuts
-
-
Screws for banjos
-
-
Banjo adaptor
-
-
BSP tee adaptor
-
-
90° BSP elbow adapter
-
-
Pressure sockets
-
-
BS rings and copper seals
-
-
Hydraulic couplers
-
-
Coupler
-
-
ISO A couplings
-
-
ISO B couplings
-
-
DIN NV couplers
-
-
Screw couplers
-
-
Face Plane couplers
-
-
BRH Face Plane Couplers
-
-
PL VCR couplers
-
-
PUMP
-
-
Hydraulic gear pumps
-
-
Hydraulic pump seals
-
-
Flanges for pumps/motors
-
-
Double hydraulic pumps
-
-
Pump units
-
-
Hand pumps
-
-
Hand pump tanks
-
-
Agricultural hydraulic pumps
-
-
Mini hydraulic power station
-
-
Security
-
-
Hydraulic accumulators
-
-
Pressure switch FOX
-
-
Heat coolers
-
-
Cooling thermostats
-
-
Hydraulic couplers
-
-
Hydraulic pressure gauges
-
-
Pressure taps
-
-
Hydraulic filters
-
-
Hydraulic valves
-
-
Description: Hydraulic safety components are essential accessories for ensuring the safety and reliability of hydraulic systems. They are designed to protect equipment and operators from overpressure, leakage and potential failure. These components include pressure relief valves, pressure limiters, non-return valves, hydraulic accumulators and other safety devices. They are made from high-quality materials and comply with the strictest safety standards. With these hydraulic safety components, you can have peace of mind knowing that your hydraulic system is operating safely and efficiently. Features: - Relief valves to relieve excess pressure - Pressure relief valves to keep pressure within safe limits - Check valves to prevent backflow of hydraulic fluid - Hydraulic accumulators to store energy and compensate for pressure variations - Complies with hydraulic safety standards Benefits: - Ensures the safety of equipment and operators - Prevents overpressure and leaks - Improves the reliability and lifespan of hydraulic systems - Facilitates maintenance and repairs - Complies with the most stringent safety standards. Improves the safety of hydraulic systems by preventing accidents and failures - Extends the life of hydraulic equipment by reducing wear and damage - Optimises the performance of hydraulic systems by ensuring smooth, efficient operation - Reduces maintenance and repair costs by improving the reliability of hydraulic equipment.
-
-
-
Distributor
-
-
Lever-operated spool valves
-
-
Drawers and detents
-
-
NG6 spool valves with lever
-
-
Splitter distributors
-
-
Lever-operated NG6 spool valves
-
-
YE45 electrical distributors
-
-
Electric selectors
-
-
Electro
-
-
Electrical distributors NG6
-
-
Subbases for electro NG6
-
-
NG6 intermediary valves
-
-
Gaskets for electro NG6
-
-
Coils for electro NG6
-
-
Connectors for coils
-
-
NG10 spool valves
-
-
Subbases for electro NG10
-
-
NG6 intermediary valves
-
-
Gaskets for electro NG10
-
-
Coils for electro NG10
-
-
Electric selectors
-
-
Tank
-
-
RESERVOIRS MANUAL PUMP
-
-
MINI POWER PLANT TANKS
-
-
EQUIPPED TANKS
-
-
NON-EQUIPPED TANKS
-
-
HGV TANKS
-
-
EXCHANGERS/COOLERS
-
-
FILLING PLUGS
-
-
SNIFFER CAPS
-
-
BREATHER PLUGS
-
-
LEVEL INDICATORS
-
-
LEVEL INDICATORS
-
-
LEVEL INDICATORS
-
-
LEVEL INDICATORS + T°
-
-
HYDRAULIC OIL HV46
-
-
Filter
-
-
SUCTION STRAINERS
-
-
SEMI-IMMERSED FILTER HEADS
-
-
IMMERGE FILTERS 10µ
-
-
25µ IMMERGED FILTERS
-
-
SPIN ON HEADS - SUCTION
-
-
SIN ON HEADS - DISCHARGE
-
-
SPIN ON FILTERS 10µ
-
-
SPIN ON FILTERS 25µ
-
-
SPIN ON 60µ FILTERS
-
-
SPIN ON FILTERS 125µ
-
-
SUCTION FILTERS
-
-
Control
-
-
Non-return valves
-
-
Clapets parachutes hydraulique
-
-
Limiteurs fin de course
-
-
Valves equilibrage
-
-
Valves de séquence
-
-
FLOW CONTROLS - Flow dividers - Flow regulators
-
-
PRESSURE CONTROL - Regulators - Limiters
-
-
Transmission
-
-
FLEXIBLE COUPLINGS
-
-
STARS for ACCOUPLISHMENTS
-
-
HYDRAULIC LANTERNS
-
-
HYDRAULIC COUPLINGS
-
-
HYDRAULIC BUSHINGS
-
-
HYDRAULIC CLUTCHES
-
-
HYDRAULIC GEARBOXES
-
-
SUPPORTS for MULTIPLATORS
-
-
HYDRAULIC COUNTER-BEARINGS
-
-
Remote control
-
-
MenuBack
-
GLOSSAIRE
-
-
Contents
-
-
A
-
-
-
-
B
-
-
-
C
-
-
-
D
-
-
Hydraulic distributor
- Lever-operated dispenser
- Drawer - notched
- Electrical distributor
- NG6 spool valve with levers
- Splitter distributor
- Electro NG6 + manual lever
- Manual selectors
- Electrical circuit selector
-
Hydraulic distributor
-
-
-
E
-
-
-
F
-
-
-
H
-
-
-
J
-
-
-
L
-
-
-
M
-
-
Hydraulic motors
- Hydraulic orbital motors
- Profiled socket - fluted
- Orbital engine seals
- Steering motors
- Motor mounting bracket
- Motor flow regulators
- Engine pressure regulators
-
Hydraulic motors
-
-
-
-
P
-
-
-
-
R
-
-
-
S
-
-
-
-
T
-
-
-
V
-
-
Double-acting hydraulic cylinders
- Double-acting cylinder - 16 x 25
- Double-acting cylinder - 20 x 32
- Double-acting cylinder - 25 x 40
- Double-acting cylinder - 30 x 50
- Double-acting cylinder - 30 x 60
- Double-acting cylinder - 35 x 60
- Double-acting cylinder - 40 x 70
- Double-acting cylinder - 40 x 80
- Double-acting cylinder - 50 x 100
- Double-acting cylinder - 70 x 120
-
Double-acting hydraulic cylinders
-
-
-
-
Cylinder
-
-
Double-acting cylinders
-
-
Double-acting cylinder seals
-
-
Single-acting cylinders
-
-
Single-acting cylinder seals
-
-
Splitter cylinders
-
-
Cylinder limit switch
-
-
BSP hydraulic fittings
-
-
BSP hydraulic hoses
-
-
Engine
-
-
Orbital hydraulic motors
-
-
Motor flow regulator
-
-
Engine pressure regulator
-
-
Motor mountings
-
-
Orbital motor seals
-
-
Profiled sockets
-
-
Orbitrol steering motors
-
-
Steering axle columns
-
-
Seals Orbitrol motors
-
-
Flexible
-
-
Male/Male BSP fittings
-
-
Male/Female BSP connections
-
-
BSP Female/Female connections
-
-
Copper seals - BS bushings
-
-
BSP connection adapters
-
-
Hydraulic valves - HP valves
-
-
Connection
-
-
Straight BSP fittings
-
-
BSP cross adapter
-
-
BSP plugs/nuts
-
-
Screws for banjos
-
-
Banjo adaptor
-
-
BSP tee adaptor
-
-
90° BSP elbow adapter
-
-
Pressure sockets
-
-
BS rings and copper seals
-
-
Hydraulic couplers
-
-
Coupler
-
-
ISO A couplings
-
-
ISO B couplings
-
-
DIN NV couplers
-
-
Screw couplers
-
-
Face Plane couplers
-
-
BRH Face Plane Couplers
-
-
PL VCR couplers
-
-
PUMP
-
-
Hydraulic gear pumps
-
-
Hydraulic pump seals
-
-
Flanges for pumps/motors
-
-
Double hydraulic pumps
-
-
Pump units
-
-
Hand pumps
-
-
Hand pump tanks
-
-
Agricultural hydraulic pumps
-
-
Mini hydraulic power station
-
-
Security
-
-
Hydraulic accumulators
-
-
Pressure switch FOX
-
-
Heat coolers
-
-
Cooling thermostats
-
-
Hydraulic couplers
-
-
Hydraulic pressure gauges
-
-
Pressure taps
-
-
Hydraulic filters
-
-
Hydraulic valves
-
-
Description: Hydraulic safety components are essential accessories for ensuring the safety and reliability of hydraulic systems. They are designed to protect equipment and operators from overpressure, leakage and potential failure. These components include pressure relief valves, pressure limiters, non-return valves, hydraulic accumulators and other safety devices. They are made from high-quality materials and comply with the strictest safety standards. With these hydraulic safety components, you can have peace of mind knowing that your hydraulic system is operating safely and efficiently. Features: - Relief valves to relieve excess pressure - Pressure relief valves to keep pressure within safe limits - Check valves to prevent backflow of hydraulic fluid - Hydraulic accumulators to store energy and compensate for pressure variations - Complies with hydraulic safety standards Benefits: - Ensures the safety of equipment and operators - Prevents overpressure and leaks - Improves the reliability and lifespan of hydraulic systems - Facilitates maintenance and repairs - Complies with the most stringent safety standards. Improves the safety of hydraulic systems by preventing accidents and failures - Extends the life of hydraulic equipment by reducing wear and damage - Optimises the performance of hydraulic systems by ensuring smooth, efficient operation - Reduces maintenance and repair costs by improving the reliability of hydraulic equipment.
-
-
-
Distributor
-
-
Lever-operated spool valves
-
-
Drawers and detents
-
-
NG6 spool valves with lever
-
-
Splitter distributors
-
-
Lever-operated NG6 spool valves
-
-
YE45 electrical distributors
-
-
Electric selectors
-
-
Electro
-
-
Electrical distributors NG6
-
-
Subbases for electro NG6
-
-
NG6 intermediary valves
-
-
Gaskets for electro NG6
-
-
Coils for electro NG6
-
-
Connectors for coils
-
-
NG10 spool valves
-
-
Subbases for electro NG10
-
-
NG6 intermediary valves
-
-
Gaskets for electro NG10
-
-
Coils for electro NG10
-
-
Electric selectors
-
-
Tank
-
-
RESERVOIRS MANUAL PUMP
-
-
MINI POWER PLANT TANKS
-
-
EQUIPPED TANKS
-
-
NON-EQUIPPED TANKS
-
-
HGV TANKS
-
-
EXCHANGERS/COOLERS
-
-
FILLING PLUGS
-
-
SNIFFER CAPS
-
-
BREATHER PLUGS
-
-
LEVEL INDICATORS
-
-
LEVEL INDICATORS
-
-
LEVEL INDICATORS
-
-
LEVEL INDICATORS + T°
-
-
HYDRAULIC OIL HV46
-
-
Filter
-
-
SUCTION STRAINERS
-
-
SEMI-IMMERSED FILTER HEADS
-
-
IMMERGE FILTERS 10µ
-
-
25µ IMMERGED FILTERS
-
-
SPIN ON HEADS - SUCTION
-
-
SIN ON HEADS - DISCHARGE
-
-
SPIN ON FILTERS 10µ
-
-
SPIN ON FILTERS 25µ
-
-
SPIN ON 60µ FILTERS
-
-
SPIN ON FILTERS 125µ
-
-
SUCTION FILTERS
-
-
Control
-
-
Non-return valves
-
-
Clapets parachutes hydraulique
-
-
Limiteurs fin de course
-
-
Valves equilibrage
-
-
Valves de séquence
-
-
FLOW CONTROLS - Flow dividers - Flow regulators
-
-
PRESSURE CONTROL - Regulators - Limiters
-
-
Transmission
-
-
FLEXIBLE COUPLINGS
-
-
STARS for ACCOUPLISHMENTS
-
-
HYDRAULIC LANTERNS
-
-
HYDRAULIC COUPLINGS
-
-
HYDRAULIC BUSHINGS
-
-
HYDRAULIC CLUTCHES
-
-
HYDRAULIC GEARBOXES
-
-
SUPPORTS for MULTIPLATORS
-
-
HYDRAULIC COUNTER-BEARINGS
-
-
Remote control
-
Symptoms of hydraulic pump failure
Hydraulic pumps play a vital role in transmitting the hydraulic power needed to power various components. However, they can sometimes break down, with serious and costly consequences. Have you ever experienced problems with your hydraulic pump? Would you like to know more about the signs of failure? dOmmon failures of hydraulic pumps ?In this extract, you'll discover the warning signs that it's crucial to pay attention to in order to keep your tool running smoothly.
How do hydraulic pumps work ?
Hydraulic pumps play an essential role in the smooth operation of hydraulic systems. They are responsible for transmitting the hydraulic power needed to power various components such as cylinders, hydraulic motors, valves and many others.
Most of these machines used in industrial and automotive applications operate on the principle of converting mechanical energy into hydraulic energy.
Hydraulic pumps are generally driven by a motor, which may be electric, thermal or hydraulic itself. When the motor drives the pump, it creates a vacuum or suction at its point of entry, allowing the hydraulic fluid to be drawn from the reservoir.
The hydraulic fluid is then fed through the pump, where a series of rotors, pistons or vanes compress the fluid and give it a high pressure. This pressurised fluid is then sent to the various components of the hydraulic system, where it exerts the force required to perform specific tasks.
What are the signs of pump failure? hydraulics ?
By keeping a close eye on certain signs, you can detect potential problems with your pumps at an early stage and take the necessary steps to resolve them.
These different signs can be divided into two categories: preliminary signs of failure and advanced signs of failure. .
The signs hydraulic pump failure preliminaries.
Early signs are the first indicators of hydraulic pump failure. They can be subtle and easy to overlook, but early detection is essential to prevent further damage. Here are some common preliminary signs:
- Reduced performance
A drop in performance manifests itself as a reduction in the power and overall efficiency of the hydraulic system. Component movements may become slower, less precise or less fluid. You may notice a loss of force, a reduction in speed or a less reactive response to controls. This drop in performance may be the result of wear to internal pump components, such as rotors, vanes or pistons, which affect the pump's ability to generate the necessary hydraulic pressure.
- Unusual noises
Abnormal noises from the hydraulic pump are often early signs of failure. You may hear grinding, knocking, hissing or cavitation noises. These sounds usually indicate mechanical problems such as worn parts, faulty bearings or excessive friction.
It is important to note any unusual noise and have it diagnosed quickly to avoid further damage to the pump.
- Vibrations
Excessive vibration in the hydraulic system may be a sign of pump failure. These vibrations may be caused by worn or misaligned internal components, imbalances in the rotors or pistons, or lubrication problems. Abnormal vibration can affect the overall performance of the system and lead to premature wear of other components.
- Increase in temperature
An abnormal rise in the temperature of the hydraulic fluid or the pump itself may indicate impending failure. Overheating can be caused by excessive friction inside the pump, lack of lubrication, worn components or poor heat dissipation.
It is vital to monitor the temperature of the hydraulic fluid regularly and to take immediate action if an abnormal rise is detected.
Early signs of hydraulic pump failure
Early warning signs are more obvious indicators of hydraulic pump failure. These signs appear as the problem progresses and can lead to more serious consequences. Here are some common warning signs:
- Fluid leaks
They can occur in the pump itself or in the fittings and seals. Leaks may be visible, in the form of drops or streaks of fluid, or detected by a drop in the level of hydraulic fluid in the reservoir. Leaks can be caused by damaged seals, worn components, cracks or fractures in the pump.
- Unstable pressure
You may notice fluctuations in system pressure, either too high or too low. This may be due to internal pump problems, such as internal leaks, faulty valves, blockages or worn components. Unstable pressure can lead to operating problems with other components in the hydraulic system, such as cylinders or hydraulic motors.
- Intermittent blockages or stoppages
The pump may block temporarily or stop completely during operation of the hydraulic system. These stoppages can be caused by obstructions in the pipes, mechanical problems such as seized bearings or worn parts, or electrical malfunctions. Intermittent blockages or stoppages can lead to interruptions in system operation and loss of productivity.
- Motor overload
A faulty hydraulic pump can overload the motor that drives it. This can result in increased energy consumption, overheating of the motor or reduced overall system performance. Prolonged overloading of the motor can cause major damage and require costly repairs.
What are the consequences of hydraulic pump failure ?
When hydraulic pumps fail, they can have a number of adverse consequences.
Firstly, these failures have a direct impact on the overall performance of the hydraulic system. A faulty pump can lead to a reduction in the force, speed, precision or responsiveness of the components powered by it. This translates into reduced efficiency and productivity of the equipment or process with which the pump is associated.
Hydraulic pump failures can also lead to costly downtime. When the pump stops working properly, industrial operations or equipment can be interrupted, resulting in lost production and delayed deliveries. The costs associated with this downtime, including emergency repairs and lost revenue, can be considerable.
What's more, such damage can lead to significant repair and replacement costs. Damage caused by a major pump failure may require costly repairs or even complete replacement of the pump.
How can hydraulic pump failure be prevented ?
Regular preventive maintenance is the key to preventing hydraulic pump failure. It includes several important measures:
- Draw up a maintenance schedule
Create a regular maintenance programme for your hydraulic pumps, taking into account the manufacturer's recommendations. Define specific time intervals for inspections, lubrication and parts replacement to keep pumps in good working order.
- Regular inspections
Plan regular inspections for your hydraulic pumps. This will allow you to detect early signs of potential problems, such as leaks, abnormal noises or excessive vibrations. During inspections, also check connections, hoses and seals to make sure they are in good condition.
- Cleaning filters
Filters play a crucial role in protecting hydraulic pumps from contaminants. Clean and replace filters regularly to prevent the build-up of particles and dirt that could clog lines or damage internal pump components.
- Regular checking of seals
Inspect the seals regularly to make sure they are in good condition. Look for signs of leakage, deterioration or loosening of the seals. Replace any faulty seals immediately to avoid more serious problems.
- Appropriate lubrication
Proper lubrication of hydraulic pumps is essential to reduce friction and wear on internal components. For proper lubrication, use mainly the lubricants recommended by the hydraulic pump manufacturer. These lubricants are specially formulated to provide optimum protection against wear and corrosion.
In addition, the manufacturer's recommendations on lubrication intervals must be followed.
By following these preventive maintenance practices, you can minimise the risk of hydraulic pump failure and extend pump life, while ensuring optimum system performance.
Still on the same theme
- How should hydraulic pumps be maintained to prevent failure ?